Given:
The vertices of a triangle are A(−1,−3) , B(−4,−1) and C(−6,−4).
Transformation: Reflection over the x-axis and a translation of shifting right 10 units.
To find:
The image after glide reflection transformation.
Solution:
The vertices of a triangle are A(−1,−3) , B(−4,−1) and C(−6,−4).
If a figure is reflected over the x-axis, then
[tex](x,y)\to (x,-y)[/tex]
Using this, we get
[tex]A(-1,-3)\to A'(-1,3)[/tex]
[tex]B(-4,-1)\to B'(-4,1)[/tex]
[tex]C(-6,-4)\to C'(-6,4)[/tex]
If a figure is shifting 10 units right, then
[tex](x,y)\to (x+10,y)[/tex]
Using this we get
[tex]A'(-1,3)\to A''(-1+10,3)[/tex]
[tex]A'(-1,3)\to A''(9,3)[/tex]
Similarly,
[tex]B'(-4,1)\to B''(-4+10,1)[/tex]
[tex]B'-4,1)\to B''(6,1)[/tex]
And,
[tex]C'(-6,-4)\to C''(-6+10,4)[/tex]
[tex]C'(-6,-4)\to C''(4,4)[/tex]
Therefore, the vertices of the image are A''(9,3), B''(6,1) and C''(4,4).