Respuesta :
Answer:
a) Nonconservative Work
[tex]W_{disp} = 9\,J[/tex]
Final Gravitational Potential Energy
[tex]U_{f} = 0\,J[/tex]
Final Translational Energy
[tex]K_{f} = 35.131\,J[/tex]
b) Nonconservative Work
[tex]W_{disp} = 6.5\,J[/tex]
Final Gravitational Potential Energy
[tex]U_{f} = 12.259\,J[/tex]
Final Translational Energy
[tex]K_{f} = 25.373\,J[/tex]
c) Nonconservative Work
[tex]W_{disp} = 4\,J[/tex]
Final Gravitational Potential Energy
[tex]U_{f} = 24.518\,J[/tex]
Final Translational Energy
[tex]K_{f} = 15.614\,J[/tex]
Explanation:
The nonconservative work due to water resistance is defined by definition of work:
[tex]W_{disp} = F\cdot (y_{o}-y_{f})[/tex] (1)
Where:
[tex]W_{disp}[/tex] - Dissipate work, in joules.
[tex]F[/tex] - Resistance force, in newtons.
[tex]y_{o}[/tex] - Initial height, in meters.
[tex]y_{f}[/tex] - Final height, in meters.
The final gravitational potential energy ([tex]U_{f}[/tex]), in joules, is calculated by means of the definition of gravitational potential energy:
[tex]U_{f} = m\cdot g\cdot y_{f}[/tex] (2)
Where:
[tex]m[/tex] - Mass of the rock, in kilograms.
[tex]g[/tex] - Gravitational acceleration, in meters per square second.
The final translational kinetic energy ([tex]K_{f}[/tex]), in joules, is obtained by means of the Principle of Energy Conservation, Work-Energy Theorem and definitions of gravitational potential energy and translational kinetic energy:
[tex]m\cdot g\cdot y_{o} = U_{f} + K_{f} + W_{disp}[/tex] (3)
[tex]K_{f} = m\cdot g\cdot y_{o} - U_{f} - W_{disp}[/tex]
Lastly, the mechanical energy of the system ([tex]E[/tex]), in joules, is the sum of final gravitational potential energy, translational kinetic energy and dissipated work due to water resistance:
[tex]E = U_{f} + K_{f} + W_{disp}[/tex] (4)
Now we proceed to solve the exercise in each case:
a) Nonconservative Work ([tex]F = 5\,N[/tex], [tex]y_{o} = 1.8\,m[/tex], [tex]y_{f} = 0\,m[/tex])
[tex]W_{disp} = (5\,N)\cdot (1.8\,m - 0\,m)[/tex]
[tex]W_{disp} = 9\,J[/tex]
Final Gravitational Potential Energy ([tex]m = 2.5\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{f} = 0\,m[/tex])
[tex]U_{f} = (2.5\,kg) \cdot \left(9.807\,\frac{m}{s^{2}}\right)\cdot (0\,m)[/tex]
[tex]U_{f} = 0\,J[/tex]
Final Translational Energy ([tex]m = 2.5\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{o} = 1.8\,m[/tex], [tex]U_{f} = 0\,J[/tex], [tex]W_{disp} = 9\,J[/tex])
[tex]K_{f} = (2.5\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1.8\,m) -0\,J-9\,J[/tex]
[tex]K_{f} = 35.131\,J[/tex]
b) Nonconservative Work ([tex]F = 5\,N[/tex], [tex]y_{o} = 1.8\,m[/tex], [tex]y_{f} = 0.50\,m[/tex])
[tex]W_{disp} = (5\,N)\cdot (1.8\,m - 0.5\,m)[/tex]
[tex]W_{disp} = 6.5\,J[/tex]
Final Gravitational Potential Energy ([tex]m = 2.5\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{f} = 0.5\,m[/tex])
[tex]U_{f} = (2.5\,kg) \cdot \left(9.807\,\frac{m}{s^{2}}\right)\cdot (0.5\,m)[/tex]
[tex]U_{f} = 12.259\,J[/tex]
Final Translational Energy ([tex]m = 2.5\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{o} = 1.8\,m[/tex], [tex]U_{f} = 12.259\,J[/tex], [tex]W_{disp} = 6.5\,J[/tex])
[tex]K_{f} = (2.5\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1.8\,m) -12.259\,J-6.5\,J[/tex]
[tex]K_{f} = 25.373\,J[/tex]
c) Nonconservative Work ([tex]F = 5\,N[/tex], [tex]y_{o} = 1.8\,m[/tex], [tex]y_{f} = 1\,m[/tex])
[tex]W_{disp} = (5\,N)\cdot (1.8\,m - 1\,m)[/tex]
[tex]W_{disp} = 4\,J[/tex]
Final Gravitational Potential Energy ([tex]m = 2.5\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{f} = 1\,m[/tex])
[tex]U_{f} = (2.5\,kg) \cdot \left(9.807\,\frac{m}{s^{2}}\right)\cdot (1\,m)[/tex]
[tex]U_{f} = 24.518\,J[/tex]
Final Translational Energy ([tex]m = 2.5\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{o} = 1.8\,m[/tex], [tex]U_{f} = 24.518\,J[/tex], [tex]W_{disp} = 4\,J[/tex])
[tex]K_{f} = (2.5\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1.8\,m) -24.518\,J-4\,J[/tex]
[tex]K_{f} = 15.614\,J[/tex]