Solve using the laws of cosine
![Solve using the laws of cosine class=](https://us-static.z-dn.net/files/df6/630f42dfc980567b77c88e824a78b58b.png)
Answer:
13°
Step-by-step explanation:
Cosine formula: a² = b² + c² - 2(b)(c)cos(a)
8² = 21² + 14² - 2(21)(14)cos(x)
64 = 441 + 196 - 588cos(x)
Bring constants to one side
64 = 441 + 196 - 588cos(x)
-441 -441 -196
-196
-573 = -588cos(x)
Divide by the coefficient
-573/-588 = -588cos(x)/-588
cos(x) = 573/588
To find x you need to use arcsin or cos^-1
x = arccos(573/588) = 12.969°
Answer:
[tex]\displaystyle 13° = m∠X[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{x^2 + y^2 - z^2}{2xy} = cos∠Z \\ \frac{x^2 - y^2 + z^2}{2xz} = cos∠Y \\ \frac{-x^2 + y^2 + z^2}{2yz} = cos∠X \\ \\ \frac{-8^2 + 14^2 + 21^2}{2[14][21]} = cos∠X → \frac{-64 + 196 + 441}{588} = cos∠X → 0,9744897959... = cos∠X \\ \\ 12,969468847...° = cos^{-1}\:0,9744897959... \\ \\ 13° ≈ 12,969468847...°[/tex]
As you can see, the inverse function MUST be used towards the end of your result, or elce you will throw it off!
I am joyous to assist you at any time.