Respuesta :

Answer:

2nd option

Step-by-step explanation:

Using the sine and cosine ratios in the right triangle

sin82° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{KL}{KM}[/tex] = [tex]\frac{KL}{\sqrt{11} }[/tex] ( multiply both sides by [tex]\sqrt{11}[/tex] )

[tex]\sqrt11}[/tex] × sin82° = KL , then

KL ≈ 3.28 ( to the nearest hundredth )

cos82° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{ML}{KM}[/tex] = [tex]\frac{ML}{\sqrt{11} }[/tex] ( multiply both sides by [tex]\sqrt{11}[/tex] )

[tex]\sqrt{11}[/tex] × cos82° = ML , then

ML ≈ 0.46 ( to the nearest hundredth )

------------------------------------------------------------

The sum of the 3 angles in a triangle = 180° , so

∠ K = 180° - (90 + 82)° = 180° - 172° = 8°

 

ACCESS MORE