The ratio [tex]|AB|:|BC|:|CD|[/tex] in its simplest form is [tex]15:6:14[/tex]
Let
[tex]|AB|=x\\|BC|=y\\|CD|=z[/tex]
from the question, [tex]|AB|:|BD|=x:(y+z)=3:4\text{ or}[/tex]
[tex]\frac{x}{y+z}=\frac{3}{4}\\\\4x=3y+3z[/tex]
also, from the question, [tex]|AC|:|CD|=(x+y):z=3:2\text{ or}[/tex]
[tex]\frac{x+y}{z}=\frac{3}{2}\\\\2x+2y=3z[/tex]
Now we have the equation set
[tex]4x=3y+3z\\2x+2y=3z[/tex]
eliminating [tex]3z[/tex], and rearranging, we get
[tex]4x=3y+(2x+2y)\\2x=5y\\\frac{x}{y}=\frac{5}{2}[/tex]
substituting [tex]5y[/tex] for [tex]2x[/tex] in the equation [tex]2x+2y=3z[/tex], then rearranging, gives
[tex](5y)+2y=3z\\7y=3z\\\frac{z}{y}=\frac{7}{3}[/tex]
We have obtained the ratios [tex]x:y=5:2[/tex], and [tex]z:y=7:3[/tex], we now have to form equivalent fractions for each ratio, so that we can obtain [tex]x:y:z[/tex]
[tex]\frac{x}{y}\text{ and }\frac{z}{y}=\frac{5}{2}\text{ and }\frac{7}{3}\\\\=\frac{5\times 3}{2\times 3}\text{ and }\frac{7\times 2}{3\times 2}\\\\=\frac{15}{6}\text{ and }\frac{14}{6}[/tex]
What we have now is
[tex]x:y=5:2=15:6\\z:y=7:3=14:6[/tex]
The final ratio in its simplest form is
[tex]x:y:z=15:6:14\\\text{ or}\\|AB|:|BC|:|CD|=15:6:14[/tex]
Learn more about Ratios here: https://brainly.com/question/1504221