Respuesta :
Solution :
1. We know that : Buoyant force = weight of the liquid displace
= volume displaced x density of the fluid
Now volume of the man = [tex]$\frac{\text{mass}}{\text{density}}$[/tex]
Mass = weight / g
[tex]$=\frac{940}{9.8}$[/tex]
= 95.92 kg
And density = 1000 [tex]kg/m^3[/tex]
Therefore,
[tex]$\text{volume} = \frac{\text{mass}}{\text{density}}$[/tex]
[tex]$=\frac{95.92}{1000}$[/tex]
= 0.0959 [tex]m^3[/tex]
We know density of air = 1.225 [tex]kg/m^3[/tex]
∴ Mass of air displaced = 0.0959 x 1.225
= 0.1175 kg
Weight of the air displaced = 1.1515 N
Therefore, the buoyant force = 1.1515 N
2). As the balloon is not accelerated, the net force acting on it is zero.
Thus the weight that acts downwards = buoyant force upwards
So, the weight of the air displaced = weight of the balloon
= 17000 N
Therefore, the mass of the air displaced = volume of the air displaced (volume of the balloon) x density of air
[tex]$\frac{17000}{9.8} = \text{volume of air} \times 1.225$[/tex]
[tex]$\text{Volume of air displaced} = \frac{1700}{9.8 \times 1.225}$[/tex]
= 1416.0766 [tex]m^3[/tex]