contestada

b. Projectile on cliff (range)
An object of mass 5 kg is projected at an angle of 25° to the horizontal with a speed of 22 ms-1 from the top of the cliff.
The height of the cliff is 21 m. Take g, the acceleration due to gravity, to be 9.81 ms2
How far horizontally (to 1 decimal place) from the base of the cliff does the object land?

Respuesta :

Answer:

x = 41.28 m

Explanation:

This is a projectile launching exercise, let's find the time it takes to get to the base of the cliff.

Let's start by using trigonometry to find the initial velocity

         cos 25 = v₀ₓ / v₀

         sin 25 = Iv_{oy} / v₀

         v₀ₓ = v₀ cos 25

         v_{oy} = v₀ sin 25

         v₀ₓ = 22 cos 25 = 19.94 m / s

         v_{oy} = 22 sin 25 = 0.0192 m / s

let's use movement on the vertical axis

         y = y₀ + v_{oy} t - ½ g t²

     

when reaching the base of the cliff y = 0 and the initial height is y₀ = 21 m

         0 = 21 + 0.0192 t - ½ 9.81 t²

         4.905 t² - 0.0192 t - 21 = 0

         t² - 0.003914 t - 4.2813 =0

we solve the quadratic equation

        t = [tex]\frac{ 0.003914\ \pm \sqrt{0.003914^2 + 4 \ 4.2813 } }{2}[/tex]

        t = [tex]\frac{0.003914 \ \pm 4.13828}{2}[/tex]

        t₁ = 2.07 s

        t₂ = -2.067 s

since time must be a positive scalar quantity, the correct result is

        t = 2.07 s

now we can look up the distance traveled

         x = v₀ₓ t

         x = 19.94  2.07

         x = 41.28 m

ACCESS MORE