Respuesta :
Answer:
a) P(0) = 80
b) [tex]P(t) = 80(2.2361)^t[/tex]
c) 22,363 cells.
d) The rate of growth after 7 hours is of 18,000 bacteria per hour.
e) 9.7 hours.
Step-by-step explanation:
A bacteria culture grows with a constant relative growth rate.
This means that the population is given by:
[tex]P(t) = P(0)(1+r)^t[/tex]
In which P(0) is the initial population and r is the growth rate, as a decimal.
After 2 hours there are 400 bacteria and after 8 hours the count is 50,000.
This means that in 6 hours, the population went from 400 bacteria to 50,000 bacteria. We use this to find r. So
[tex]50000 = 400(1+r)^6[/tex]
[tex](1+r)^6 = \frac{50000}{400}[/tex]
[tex](1+r)^6 = 125[/tex]
[tex]\sqrt[6]{(1+r)^6} = \sqrt[6]{125}[/tex]
[tex]1 + r = 125^{\frac{1}{6}}[/tex]
[tex]1 + r = 2.2361[/tex]
So
[tex]P(t) = P(0)(2.2361)^t[/tex]
(a) Find the initial population. P(0)
We have that P(2) = 400. We use this to find P(0). So
[tex]P(t) = P(0)(2.2361)^t[/tex]
[tex]400 = P(0)(2.2361)^2[/tex]
[tex]P(0) = \frac{400}{(2.2361)^2}[/tex]
[tex]P(0) = 80[/tex]
So
[tex]P(t) = 80(2.2361)^t[/tex]
(b) Find an expression for the population after t hours.
[tex]P(t) = 80(2.2361)^t[/tex]
(c) Find the number of cells after 7 hours.
This is P(7). So
[tex]P(7) = 80(2.2361)^7 = 22363[/tex]
22,363 cells.
(d) Find the rate of growth after 7 hours.
We have to find the derivative when t = 7. So
[tex]P(t) = 80(2.2361)^t[/tex]
[tex]P^{\prime}(t) = 80\ln{2.2361}(2.2361)^t[/tex]
[tex]P^{\prime}(7) = 80\ln{2.2361}(2.2361)^7 = 18000[/tex]
The rate of growth after 7 hours is of 18,000 bacteria per hour.
(e) When will the population reach 200,000?
This is t for which [tex]P(t) = 200000[/tex]. So
[tex]P(t) = 80(2.2361)^t[/tex]
[tex]200000 = 80(2.2361)^t[/tex]
[tex](2.2361)^t = \frac{200000}{80}[/tex]
[tex](2.2361)^t = 2500[/tex]
[tex]\log{(2.2361)^t} = \log{2500}[/tex]
[tex]t\log{2.2361} = \log{2500}[/tex]
[tex]t = \frac{\log{2500}}{\log{2.2361}}[/tex]
[tex]t = 9.7[/tex]
So 9.7 hours.