A trough is 12 ft long and its ends have the shape of isosceles triangles that are 3 ft across at the top and have a height of 1 ft. If the trough is being filled with water at a rate of 14 ft3/min, how fast is the water level rising when the water is 4 inches deep

Respuesta :

Answer:

[tex]\frac{dh}{dt}=0.5ft[/tex]

Step-by-step explanation:

From the question we are told that:

Length [tex]l=12[/tex]

Top length [tex]l_t=3ft[/tex]

Height [tex]h=1ft[/tex]

Rate [tex]R=14 ft3/min[/tex]

Water rise [tex]w=4[/tex]

Generally the equation for Velocity is mathematically given by

[tex]V=frac{1}{2}wh'(l)\\\\V=frac{1}{2}wh'(12)[/tex]

[tex]V=18h'^2[/tex]

Therefore

[tex]R=18(2h)(\frac{dh}{dt})[/tex]

Where

[tex]h=\frac{3}{4}[/tex]

Therefore

[tex]\frac{dh}{dt}=\frac{R}{18(2h)}[/tex]

[tex]\frac{dh}{dt}=\frac{14}{18(2.3/4)}[/tex]

[tex]\frac{dh}{dt}=0.5ft[/tex]

ACCESS MORE