Solution :
a). The test is a left tailed test.
b). The sample proportion is :
[tex]$\hat p = \frac{x}{n}$[/tex]
[tex]$\hat p = \frac{17}{258}$[/tex]
= 0.065
Determining the Z statistics using the formula :
[tex]$Z=\frac{\hat p - p}{\sqrt{\frac{p(1-p)}{n}}}$[/tex]
[tex]$Z=\frac{0.065 - 0.11}{\sqrt{\frac{0.11(1-0.11)}{258}}}$[/tex]
= -2.31
∴ Z statistics value is -2.31
c). Using the excel function, the P-value is :
P-value = Normsdist(-2.31)
= 0.0104441
d). The null hypothesis is [tex]$H_0: P = 0.11$[/tex]
The level of significance is 0.01
We fail to reject the null hypothesis as the P value is less than or equal to the significant level.