Answer:
Following are the solution to the given points:
Step-by-step explanation:
As a result, Poisson for each driver seems to be the number of accidents.
Let X be the random vector indicating accident frequency.
Let, [tex]\lambda=[/tex]Expected accident frequency
[tex]P(X=0) = e^{-\lambda}[/tex]
For class 1:
[tex]P(X=0) = \frac{1}{(1-0.2)} \int_{0.2}^{1} e^{-\lambda} d\lambda \\\\P(X=0) = \frac{1}{0.8} \times [-e^{-1}-(-e^{-0.2})] = 0.56356[/tex]
For class 2:
[tex]P(X=0) = \frac{1}{(2-0.4)} \int_{0.4}^{2} e^{-\lambda} d\lambda\\\\P(X=0) = \frac{1}{1.6} \times [-e^{-2}-(-e^{-0.4})] = 0.33437[/tex]
For class 3:
[tex]P(X=0) = \frac{1}{(3-0.6)} \int_{0.6}^{3} e^{-\lambda} d\lambda\\\\P(X=0) = \frac{1}{2.4} \times [-e^{-3}-(-e^{-0.6})] = 0.20793[/tex]
The population is equally divided into three classes of drivers.
Hence, the Probability
[tex]\to P(X=0) = \frac{1}{3} \times 0.56356+\frac{1}{3} \times 0.33437+\frac{1}{3} \times 0.20793=0.36862[/tex]