Answer:
[tex]\triangle h_c =0.204m[/tex]
Explanation:
Diameter [tex]d=30cm[/tex]
Height [tex]h=90cm[/tex]
Fill height [tex]h_f=60cm[/tex]
Angular speed [tex]N=180rpm[/tex]
Generally the equation for Angular velocity is mathematically given by
[tex]\omega=\frac{2 \pi*N}{60}[/tex]
[tex]\omega=\frac{2 \pi*180}{60}[/tex]
[tex]\omega=18.85rads/s[/tex]
Generally the equation for Liquid surface is mathematically given by
[tex]\mu_s=h*\frac{\omega^2*0.15^2}{4*9.81}[/tex]
[tex]\mu_s=0.396m[/tex]
Therefore the liquid drop at center due to rotation is
[tex]\triangle h_c =h-\mu_s[/tex]
[tex]\triangle h_c =0.60-0.396[/tex]
[tex]\triangle h_c =0.204m[/tex]