Answer:
The proportion of memory sticks that will be scrapped is 0.3 = 30%.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:
[tex]P(X < x) = \frac{x - a}{b - a}[/tex]
The probability of finding a value between c and d is:
[tex]P(c \leq X \leq d) = \frac{d - c}{b - a}[/tex]
The probability of finding a value above x is:
[tex]P(X > x) = \frac{b - x}{b - a}[/tex]
Distributed uniformly between 3mm and 13 mm.
This means that [tex]a = 3, b = 13[/tex]
Calculate the proportion of memory sticks that will be scrapped:
[tex]P(X > 10) = \frac{13 - 10}{13 - 3} = \frac{3}{10} = 0.3[/tex]
The proportion of memory sticks that will be scrapped is 0.3 = 30%.