Respuesta :

Answer:

A = 374.123 ft^2

Step-by-step explanation:

First, lets calculate the perimeter:

Perimeter (p) = side length (s) * number of sides (n)

[tex]p = s * n[/tex]

[tex]p = 12 * 6[/tex]

[tex]p = 72[/tex]

Next, lets find the apothem, which is the shortest length from any side to the middle. It's like the radius in a circle, but more complicated.

Apothem (a) = side length (s) / ( 2 * tan(180/number of sides (n)) )

[tex]a = \frac{s}{2 * tan (\frac{180}{n} )}[/tex]

[tex]a = \frac{12}{2 * tan (\frac{180}{6} )}[/tex]

[tex]a = \frac{12}{2 * \frac{\sqrt{3} }{3}}[/tex]

[tex]a = \frac{12}{\frac{2\sqrt{3} }{3}}[/tex]

[tex]a = \frac{12*3}{2\sqrt{3}}[/tex]

[tex]a = \frac{6*3}{\sqrt{3}}[/tex]

[tex]a = \frac{18}{\sqrt{3}}[/tex]

Now, finally, to find the area of a regular polygon, we use the following equation:

Area (A) = ( apothem (a) * perimeter (p) ) / 2

[tex]A = \frac{a * p}{2}[/tex]

[tex]A = \frac{\frac{18}{\sqrt{3} } * 72}{2}[/tex]

[tex]A = \frac{18}{\sqrt{3}} * 36[/tex]

[tex]A = \frac{640}{\sqrt{3}}[/tex]

Turning into a decimal:

[tex]A = 374.123 ft ^2[/tex]

ACCESS MORE