Respuesta :

Answer:

[tex]\angle m + \angle t + \angle n = 180[/tex]

Step-by-step explanation:

Required

Show that:

[tex]\angle m + \angle t + \angle n = 180^o[/tex]

To make the proof easier, I've added a screenshot of the triangle.

We make use of alternate angles to complete the proof.

In the attached triangle, the two angles beside [tex]\angle m[/tex] are alternate to [tex]\angle t[/tex] and [tex]\angle n[/tex]

i.e.

[tex]\angle 1 = \angle t[/tex]

[tex]\angle 2 = \angle n[/tex]

Using angle on a straight line theorem, we have:

[tex]\angle 1 + \angle m + \angle 2 = 180[/tex]

Substitute values for (1) and (2)

[tex]\angle t + \angle m + \angle n = 180[/tex]

Rewrite as:

[tex]\angle m + \angle t + \angle n = 180[/tex] -- proved

Ver imagen MrRoyal
ACCESS MORE