Write the composite function in the form f(g(x)). [Identify the inner function u = g(x) and the outer function y = f(u).] $ y = e^{{\color{red}5}\sqrt{x}} $

Respuesta :

Answer:

The answer is "[tex]\frac{5 e^{5\sqrt{x} }}{2\sqrt{x}}[/tex]".

Step-by-step explanation:

Given:

[tex]y = e^{{\color{\red}5}\sqrt{x}}[/tex]

let

[tex]\to t= 5\sqrt{x}\\\\\frac{dt}{dx}= 5 \frac{1}{2\sqrt{x}}\\\\\frac{dt}{dx}= \frac{5}{2\sqrt{x}}\\\\[/tex]

and

[tex]\to y=e^t\\\\\to \frac{dy}{dt}=e^t\\[/tex]

[tex]\to \frac{dy}{dt}=e^{5\sqrt{x} }\\[/tex]

So,

[tex]\to \frac{dy}{dx}= \frac{dy}{dt} \times \frac{dt}{dx}[/tex]

         [tex]=e^{5\sqrt{x} }\times \frac{5}{2\sqrt{x}}\\\\= \frac{5 e^{5\sqrt{x} }}{2\sqrt{x}}[/tex]

OR

[tex]\to g(x) = 5\sqrt{x} \\\\\to f(x) = e^{(x)}\\\\[/tex]

Derivate:  

[tex]\to f''g' = \frac{e^{(5\sqrt{x})}5}{(2\sqrt{x})}[/tex]

ACCESS MORE