Respuesta :

Answer:

23

Step-by-step explanation:

We are given that

f(2)=13

[tex]f'(x)\geq 2[/tex]

[tex]2\leq x\leq 7[/tex]

We have to find the possible small value of f(7).

We know that

[tex]f'(x)=\frac{f(b)-f(a)}{b-a}[/tex]

Using the formula

[tex]f'(x)=\frac{f(7)-f(2)}{7-2}[/tex]

[tex]f'(x)=\frac{f(7)-13}{5}[/tex]

We have

[tex]f'(x)\geq 2[/tex]

[tex]\frac{f(7)-13}{5}\geq 2[/tex]

[tex]f(7)-13\geq 2\times 5[/tex]

[tex]f(7)-13\geq 10[/tex]

[tex]f(7)\geq 10+13[/tex]

[tex]f(7)\geq 23[/tex]

The small value of f(7) can be 23.