Answer:
T₂ > T₁ > T₃ >T₄
Explanation:
In a simple harmonic motion the angular velocity is
w = [tex]\sqrt{\frac{k}{m} }[/tex]
angular velocity and period are related
w = 2π / T
we substitute
T = [tex]2 \pi \ \sqrt{\frac{m}{k} }[/tex]
let's find the period for each case
a) mass m
spring constant k
T₁ = 2π [tex]\sqrt{\frac{m}{k} }[/tex]
b) mass 2m
spring constant k
T₂ = 2π [tex]\sqrt{\frac{2m}{k} }[/tex]
T₂ = T₁ √2
T₂ = T₁ 1.41
c) masses 3m
spring constant 6k
T₃ = 2π [tex]\sqrt{\frac{3m}{6k} }[/tex]
T₃ = 2π [tex]\sqrt{\frac{m}{k} } \ \sqrt{0.5}[/tex]
T₃ = T₁ 0.707
d) mass m
spring constant 4k
T₄ = 2π [tex]\sqrt{ \frac{m}{4k} }[/tex]
T₄ = 2π [tex]\sqrt{\frac{m}{k} } \ \sqrt{0.25}[/tex]
T₄ = T₁ 0.5
now let's order the periods in decreasing order
T₂ > T₁ > T₃ >T₄