dy/dx = 4 + √(y - 4x + 6)
Make a substitution of v(x) = y(x) - 4x + 6, so that dv/dx = dy/dx - 4. Then the DE becomes
dv/dx + 4 = 4 + √v
dv/dx = √v
which is separable as
dv/√v = dx
Integrating both sides gives
2√v = x + C
Get the solution back in terms of y :
2√(y - 4x + 6) = x + C
You can go on to solve for y explicitly if you want.
√(y - 4x + 6) = x/2 + C
y - 4x + 6 = (x/2 + C )²
y = 4x - 6 + (x/2 + C )²