[infinity]
Substitute y(x)= Σ 2 anx^n and the Maclaurin series for 6 sin3x into y' - 2xy = 6 sin 3x and equate the coefficients of like powers of x on both sides of the equation to n= 0. Find the first four nonzero terms in a power series expansion about x = 0 of a general
n=0
solution to the differential equation.

У(Ñ)= ___________

Respuesta :

Recall that

[tex]\sin(x)=\displaystyle\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}[/tex]

Differentiating the power series series for y(x) gives the series for y'(x) :

[tex]y(x)=\displaystyle\sum_{n=0}^\infty a_nx^n \implies y'(x)=\sum_{n=1}^\infty na_nx^{n-1}=\sum_{n=0}^\infty (n+1)a_{n+1}x^n[/tex]

Now, replace everything in the DE with the corresponding power series:

[tex]y'-2xy = 6\sin(3x) \implies[/tex]

[tex]\displaystyle\sum_{n=0}^\infty (n+1)a_{n+1}x^n - 2\sum_{n=0}^\infty a_nx^{n+1} = 6\sum_{n=0}^\infty(-1)^n\frac{(3x)^{2n+1}}{(2n+1)!}[/tex]

The series on the right side has no even-degree terms, so if we split up the even- and odd-indexed terms on the left side, the even-indexed [tex](n=2k)[/tex] series should vanish and only the odd-indexed [tex](n=2k+1)[/tex] terms would remain.

Split up both series on the left into even- and odd-indexed series:

[tex]y'(x) = \displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} + \sum_{k=0}^\infty (2k+2)a_{2k+2}x^{2k+1}[/tex]

[tex]-2xy(x) = \displaystyle -2\left(\sum_{k=0}^\infty a_{2k}x^{2k+1} + \sum_{k=0}^\infty a_{2k+1}x^{2k+2}\right)[/tex]

Next, we want to condense the even and odd series:

• Even:

[tex]\displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2k+2}[/tex]

[tex]=\displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2(k+1)}[/tex]

[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2(k+1)}[/tex]

[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=1}^\infty a_{2(k-1)+1}x^{2k}[/tex]

[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=1}^\infty a_{2k-1}x^{2k}[/tex]

[tex]=\displaystyle a_1 + \sum_{k=1}^\infty \bigg((2k+1)a_{2k+1} - 2a_{2k-1}\bigg)x^{2k}[/tex]

• Odd:

[tex]\displaystyle \sum_{k=0}^\infty 2(k+1)a_{2(k+1)}x^{2k+1} - 2\sum_{k=0}^\infty a_{2k}x^{2k+1}[/tex]

[tex]=\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2(k+1)}-2a_{2k}\bigg)x^{2k+1}[/tex]

[tex]=\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2k+2}-2a_{2k}\bigg)x^{2k+1}[/tex]

Notice that the right side of the DE is odd, so there is no 0-degree term, i.e. no constant term, so it follows that [tex]a_1=0[/tex].

The even series vanishes, so that

[tex](2k+1)a_{2k+1} - 2a_{2k-1} = 0[/tex]

for all integers k ≥ 1. But since [tex]a_1=0[/tex], we find

[tex]k=1 \implies 3a_3 - 2a_1 = 0 \implies a_3 = 0[/tex]

[tex]k=2 \implies 5a_5 - 2a_3 = 0 \implies a_5 = 0[/tex]

and so on, which means the odd-indexed coefficients all vanish, [tex]a_{2k+1}=0[/tex].

This leaves us with the odd series,

[tex]\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2k+2}-2a_{2k}\bigg)x^{2k+1} = 6\sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}[/tex]

[tex]\implies 2(k+1)a_{2k+2} - 2a_{2k} = \dfrac{6(-1)^k}{(2k+1)!}[/tex]

We have

[tex]k=0 \implies 2a_2 - 2a_0 = 6[/tex]

[tex]k=1 \implies 4a_4-2a_2 = -1[/tex]

[tex]k=2 \implies 6a_6-2a_4 = \dfrac1{20}[/tex]

[tex]k=3 \implies 8a_8-2a_6 = -\dfrac1{840}[/tex]

So long as you're given an initial condition [tex]y(0)\neq0[/tex] (which corresponds to [tex]a_0[/tex]), you will have a non-zero series solution. Let [tex]a=a_0[/tex] with [tex]a_0\neq0[/tex]. Then

[tex]2a_2-2a_0=6 \implies a_2 = a+3[/tex]

[tex]4a_4-2a_2=-1 \implies a_4 = \dfrac{2a+5}4[/tex]

[tex]6a_6-2a_4=\dfrac1{20} \implies a_6 = \dfrac{20a+51}{120}[/tex]

and so the first four terms of series solution to the DE would be

[tex]\boxed{a + (a+3)x^2 + \dfrac{2a+5}4x^4 + \dfrac{20a+51}{120}x^6}[/tex]

ACCESS MORE