Answer:
-376 kJ
Explanation:
The first step equation:
[tex]\mathsf{N_{2(g)} + 3H_2{(g)} \to 2NH_3{(g)} \ \ \ \Delta H = -92\ kJ}[/tex] ---- (1)
The second step equation:
[tex]\mathsf{NH_{3(g)} + 2O_2{(g)} \to HNO_3{(g)} +H_2O_{(g)} \ \ \ \Delta H = -330\ kJ}[/tex] ---- (2)
To determine the enthalpy of formation for 1 mole of HNO₃ (nitric acid), we have the following.
From the above equations; let multiply equation (1) by 1 and equation (2) by 2.
[tex]\mathsf{N_{2(g)} + 3H_2{(g)} \to 2NH_3{(g)} \ \ \ \Delta H = -92\ kJ}[/tex] ---- (3)
[tex]\mathsf{2NH_{3(g)} + 4O_2{(g)} \to 2HNO_3{(g)} +2H_2O_{(g)} \ \ \ \Delta H = 2(-330)\ kJ}[/tex] ----- (4)
adding the above two equations, we have:
[tex]\mathsf{N_{2(g)} + 3H_2{(g)}+ 2NH_{3(g)} + 4O_{2(g)} \to 2HNO_{3(g)} + 2NH_3{(g)} +2H_2O_{(g)} \ \ \ \Delta H = (-660 \ kJ -92\ kJ)}[/tex][tex]\mathsf{N_{2(g)} + 3H_2{(g)} + 4O_{2(g)} \to 2HNO_{3(g)} +2H_2O_{(g)} \ \ \ \Delta H = (-752 \ kJ)}[/tex]
Now, from the recent equation, we have:
2 moles of nitric acid = -752 kJ
∴
1 mole of nitric acid will be: = (1 mole × (-752 kJ)) ÷ 2 moles
1 mole of nitric acid will be: = -376 kJ