given that (2*(x -3) ) / 8*( 2 y - 3) = 16*( x - y )
![given that 2x 3 8 2 y 3 16 x y class=](https://us-static.z-dn.net/files/d66/c8f6aaef0c9f76bdfa6ab65185ae6b37.jpg)
Answer:
2 ^ (x - 3) ÷ 2 ^ 3(2y - 3)=2 ^ 4(x - y)
The two are common so we give it out then
x - 3 ÷ 6y - 9 =4x - 4y
x - 3 -4x - 4y = 6y -9
-3x -2y = -6
6=3x+2y
Answer:
Step-by-step explanation:
[tex]\frac{2^{x-3}}{8^{2y-3}}=16^{x-y}\\\\\frac{2^{x-3}}{(2^{3})^{2y-3}}=(2^{4})^{x-y}\\\\\frac{2^{x-3}}{2^{3*(2y-3)}}=2^{4*(x-y)}\\\\\frac{2^{x-3}}{2^{6y-9}}=2^{4x-4y}\\\\2^{x-3 -(6y-9)}=2^{4x-4y}\\\\2^{x-3-6y+9}=2^{4x-4y}\\\\2^{x-6y+6}=2^{4x-4y}[/tex]
base is same, so equate the powers
x - 6y + 6 = 4x - 4y
Subtract 'x' from both sides
-6y + 6 = 4x -x - 4y
-6y + 6 = 3x - 4y
Add '6y' to both sides
6 = 3x - 4y + 6y
6 = 3x + 2y
Hence proved