Respuesta :
Given:
The given expression is:
[tex]6x^2y-3xy-24xy^2+12y^2[/tex]
To find:
Part A: The expression by factoring out the greatest common factor.
Part B: Factor the entire expression completely.
Solution:
Part A:
We have,
[tex]6x^2y-3xy-24xy^2+12y^2[/tex]
Taking out the highest common factor 3y, we get
[tex]=3y(2x^2-x-8xy+4y)[/tex]
Therefore, the required expression is [tex]3y(2x^2-x-8xy+4y)[/tex].
Part B:
From part A, we have,
[tex]3y(2x^2-x-8xy+4y)[/tex]
By grouping method, we get
[tex]=3y(x(2x-1)-4y(2x-1))[/tex]
[tex]=3y(x-4y)(2x-1)[/tex]
Therefore, the required factored form of the given expression is [tex]3y(x-4y)(2x-1)[/tex].