Given:
The ratio of the cost of a shirt to the cost of a jacket is 2:5.
The jacket cost $240 more than the shirt.
To find:
The cost of the shirt and the cost of the jacket.
Solution:
Let x be the cost of the shirt.
The jacket cost $240 more than the shirt. So, the cost of Jacket is (x+240).
The ratio of the cost of a shirt to the cost of a jacket is 2:5. So,
[tex]\dfrac{x}{x+240}=\dfrac{2}{5}[/tex]
[tex]5x=2(x+240)[/tex]
[tex]5x=2x+480[/tex]
Subtract 2x from both sides.
[tex]5x-2x=480[/tex]
[tex]3x=480[/tex]
Divide both sides by 3.
[tex]x=\dfrac{480}{3}[/tex]
[tex]x=160[/tex]
So, the cost of shirt is $160.
Now, the cost of jacket is:
[tex]160+240=400[/tex]
Therefore, the cost of shirt is $160 and the cost of jacket is $400.