What is the distance between (8, -3) and (4, - 7)?
Choose 1 answer:
Will GIVE YOU BRAINLIEST
![What is the distance between 8 3 and 4 7 Choose 1 answer Will GIVE YOU BRAINLIEST class=](https://us-static.z-dn.net/files/de3/969ebf3c2b40e3322eab0bb4d7f56253.png)
Step-by-step explanation:
We'll find the distance using the all-famous "Distance Formula." You'll probably come across it quite a bit, so it's best to have it written down somewhere.
The Distance Formula: [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
Our points are (8, -3) and (4, -7), so we'll plug in those numbers accordingly.
For reference:
x2 = 4
x1 = 8
y2 = -7
y1 = -3
The calculation:
(substitute)
[tex]\sqrt{(4-8)^2+((-7)-(-3))^2 }[/tex]
(simplify)
[tex]\sqrt{(-4)^2+(-4)^2 }[/tex]
(square things)
[tex]\sqrt{16+16 }[/tex]
(add)
[tex]\sqrt{32}[/tex]
Answer:
[tex]\sqrt{32}[/tex]
Answer:
[tex]\boxed {\boxed {\sf C. \sqrt{32}}}[/tex]
Step-by-step explanation:
The distance between 2 points can be determined with the following formula.
[tex]d= \sqrt{(x_2-x_1)^2+ (y_2-y_1)^2[/tex]
In this formula, (x₁, y₁) and (x₂, y₂) are the 2 points. We want to find the distance between the points (8, -3) and (4, -7). If we match the value with its corresponding variable, then we see:
Substitute the values into the formula.
[tex]d= \sqrt{(4-8)^2+(-7--3)^2[/tex]
Solve inside the parentheses.
[tex]d= \sqrt {(-4)^2+(-4)^2[/tex]
Solve the exponents.
[tex]d= \sqrt {16+16[/tex]
Add.
[tex]d= \sqrt {32}[/tex]
This radical can be simplified, but since it is an answer choice, we can leave it as is.
The distance between the points (8, -3) and (4, -7) is √32 and choice C is correct.