Respuesta :
Answer:
[tex]\displaystyle y' = \frac{y - 5x}{x + 6y^2}[/tex]
General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Factoring
Calculus
Differentiation
- Derivatives
- Derivative Notation
- Implicit Differentiation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle 5x^2 - 2xy + 4y^3 = 5[/tex]
Step 2: Differentiate
- Implicit Differentiation: [tex]\displaystyle \frac{dy}{dx}[5x^2 - 2xy + 4y^3] = \frac{dy}{dx}[5][/tex]
- Rewrite [Derivative Property - Addition/Subtraction]: [tex]\displaystyle \frac{dy}{dx}[5x^2] - \frac{dy}{dx}[2xy] + \frac{dy}{dx}[4y^3] = \frac{dy}{dx}[5][/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle 5\frac{dy}{dx}[x^2] - 2\frac{dy}{dx}[xy] + 4\frac{dy}{dx}[y^3] = \frac{dy}{dx}[5][/tex]
- Basic Power Rule [Chain Rule]: [tex]\displaystyle 10x - 2\frac{dy}{dx}[xy] + 12y^2y' = 0[/tex]
- Product Rule: [tex]\displaystyle 10x - 2\bigg[ \frac{dy}{dx}[x]y + x\frac{dy}{dx}[y] \bigg] + 12y^2y' = 0[/tex]
- Basic Power Rule [Chain Rule]: [tex]\displaystyle 10x - 2\bigg[ y + xy' \bigg] + 12y^2y' = 0[/tex]
- Simplify: [tex]\displaystyle 10x - 2y + 2xy' + 12y^2y' = 0[/tex]
- Isolate y' terms: [tex]\displaystyle 2xy' + 12y^2y' = 2y - 10x[/tex]
- Factor: [tex]\displaystyle y'(2x + 12y^2) = 2y - 10x[/tex]
- Isolate y': [tex]\displaystyle y' = \frac{2y - 10x}{2x + 12y^2}[/tex]
- Factor: [tex]\displaystyle y' = \frac{2(y - 5x)}{2(x + 6y^2)}[/tex]
- Simplify: [tex]\displaystyle y' = \frac{y - 5x}{x + 6y^2}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e