I also need to show calculations for each side length plz help
![I also need to show calculations for each side length plz help class=](https://us-static.z-dn.net/files/d7f/4127c9bcd7263f80a465332d2aafebfa.png)
Answer:
WO [tex]\sqrt{13}\ \ \ \frac{3}{2}[/tex]
OR [tex]\sqrt{13}\ \ \ - \frac{3}{2}[/tex]
RM [tex]\sqrt{13}\ \ \ \frac{3}{2}[/tex]
MW [tex]\sqrt{13}\ \ \ - \frac{3}{2}[/tex]
Step-by-step explanation:
One has to find the slope, and the distance between the successive points on the plane. Use the slope and distance formula to achieve this.
Slope formula:
[tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
Distance formula:
[tex]\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]
Remember, the general format for the coordinates of a point on a Cartesian coordinate plane is the following:
[tex](x,y)[/tex]
1. WO
Coordinates of point (W): (3, -5)
Coordinates of point (O): (6, -3)
Find the slope:
[tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\frac{(-5)-(-3)}{(3)-(6)}=\frac{-5+3}{3-6}=\frac{-2}{-3}=\frac{2}{3}[/tex]
Find the distance:
[tex]\sqrt{((-5)-(-3))^2+((3)-(6))^2}[/tex]
[tex]\sqrt{(-2)^2+(-3)^2}\\=\sqrt{4+9}\\=\sqrt{13}\\[/tex]
2. OR
Coordinates of point (O): (6, -3)
Coordinates of point (R): (4, 0)
Find the slope:
[tex]\frac{y_2-y_1}{x_2-x_1}\\=\frac{(0)-(-3)}{(4)-(6)}=\frac{3}{-2}=-\frac{3}{2}[/tex]
Find the distance:
[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\sqrt{((0)-(-3))^2+((4)-(6))^2}=\sqrt{(3)^2+(2)^2}=\sqrt{9+4}=\sqrt{13}[/tex]
3. RM
Coordinates of point (R): (4, 0)
Coordinates of point (M): (1, -2)
Find the slope:
[tex]\frac{y_2-y_1}{x_2-x_1}\\=\frac{(0)-(-2)}{(4)-(1)}=\frac{2}{3}[/tex]
Find the distance:
[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\sqrt{((-2)-(0))^2+((1)-(4))^2}=\sqrt{(-2)^2+(-3)^2}=\sqrt{4+9}=\sqrt{13}[/tex]
4. MW
Coordinates of point (M): (1, -2)
Coordinates of point (W): (3, -5)
Find the slope:
[tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]=\frac{(-5)-(-2)}{(3)-(1)}=\frac{-3}{2}=-\frac{3}{2}[/tex]
Find the distance:
[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]=\sqrt{((3)-(1))^2+((-5)-(-2))^2}=\sqrt{(2)^2+(3)^2}=\sqrt{4+9}=\sqrt{13}[/tex]