Respuesta :

caylus

Answer:

Hello,

answer is 204 in base 10 or 21120 in base 3

Step-by-step explanation:

[tex]((202)_3)^2=(202*202)_3=(112211)_3\\\\((112)_3)^2=(112*112)_3=(21021)_3\\\\(112211-21021)_3=(211120)_3=(204)_{10}\\\\\\\\\\Other\ way\\\\((202)_3)^2=((20)_{10})^2=(400)_{10}\\\\((112)_3)^2=((14)_{10})^2=(196)_{10}\\\\(400-196)_{10}=(204)_{10}=(21120)_3[/tex]