Which values of a and b in the exponential function y = a times b Superscript x would result in the following graph? On a coordinate plane, a curve approaches the x-axis in quadrant 3 and then decreases down through (0, negative 3) to quadrant 4. a. a = -3, b = 2 c. a = 3, b = 2 b. a = -1, b = 3 d. a = 2, b = -3 Please select the best answer from the choices provided A B C D

Respuesta :

Answer:

[tex]a =-3[/tex]    [tex]b =2[/tex]

Step-by-step explanation:

Given

[tex]y = ab^x[/tex]

[tex](x_1,y_1) = (0,-3)[/tex]

Required

Find a and b

Substitute [tex](x_1,y_1) = (0,-3)[/tex] for x and y in [tex]y = ab^x[/tex]

[tex]-3 = ab^0[/tex]

[tex]-3 = a * 1[/tex]

[tex]-3 = a[/tex]

Rewrite as:

[tex]a =-3[/tex]

The above implies that (a) is correct;

Hence:

[tex]a =-3[/tex]    [tex]b =2[/tex]

So, the equation is:

[tex]y = -3(2)^x[/tex]

Answer: a=-3 b=2

Step-by-step explanation: