Answer:
x = [tex]\frac{5}{2}[/tex] , y = [tex]\frac{27}{4}[/tex]
Step-by-step explanation:
Equate the first 2 parts of the ratios on both sides of the equation and solve for x.
Expressing the ratios in fractional form, then
[tex]\frac{x}{3}[/tex] = [tex]\frac{\frac{15}{4} }{\frac{9}{2} }[/tex] = [tex]\frac{15}{4}[/tex] × [tex]\frac{2}{9}[/tex] = [tex]\frac{5}{6}[/tex] ( cross- multiply )
6x = 15 ( divide both sides by 6 )
x = [tex]\frac{15}{6}[/tex] = [tex]\frac{5}{2}[/tex]
-----------------------------------------------------------------------------------
Equate the last 2 parts of the ratios on both sides and solve for y
[tex]\frac{\frac{9}{2} }{y}[/tex] = [tex]\frac{3}{\frac{9}{2} }[/tex] = 3 × [tex]\frac{2}{9}[/tex] = [tex]\frac{2}{3}[/tex] ( cross- multiply )
2y = [tex]\frac{9}{2}[/tex] × 3 = [tex]\frac{27}{2}[/tex] ( divide both sides by 2 )
y = [tex]\frac{27}{4}[/tex]