Answer:
It is shifted left 5 units and up 2 units from the parent function.
Step-by-step explanation:
Given
[tex]y = \frac{1}{x}[/tex]
[tex]y' = \frac{1}{x+5} + 2[/tex]
Required
Compare both functions
First, translate y, 5 units left.
The rule is:
[tex](x,y) \to (x + 5,y)[/tex]
So, we have:
[tex]y = \frac{1}{x}[/tex]
[tex]y_1 = \frac{1}{x + 5}[/tex]
Next, translate y1, 2 units up.
The rule is:
[tex](x,y) \to (x,y+2)[/tex]
So, we have:
[tex]y' = y_1 + 2[/tex]
[tex]y' = \frac{1}{x + 5} + 2[/tex]
Hence, the transformation is:
5 units left and 2 units up