A planet of mass m = 4.25 x 1024 kg orbits a star of mass M = 6.75 x 1029 kg in a circular path. The radius of the orbits R = 8.85 x 107 km. What is the orbital period Tplanet of the planet in Earth days? ​

Respuesta :

285.3 days

Explanation:

The centripetal force [tex]F_c[/tex] experienced by the planet is the same as the gravitational force [tex]F_G[/tex] so we can write

[tex]F_c = F_G[/tex]

or

[tex]m\dfrac{v^2}{R} = G\dfrac{mM}{R^2}[/tex]

where M is the mass of the star and R is the orbital radius around the star. We know that

[tex]v = \dfrac{C}{T} = \dfrac{2\pi R}{T}[/tex]

where C is the orbital circumference and T is orbital period. We can then write

[tex]\dfrac{4\pi^2R}{T^2} = G\dfrac{M}{R^2}[/tex]

Isolating [tex]T^2[/tex], we get

[tex]T^2 = \dfrac{4\pi^2R^3}{GM}[/tex]

Taking the square root of the expression above, we get

[tex]T = 2\pi \sqrt{\dfrac{R^3}{GM}}[/tex]

which turns out to be [tex]T = 2.47×10^7\:\text{s}[/tex]. We can convert this into earth days as

[tex]T = 2.47×10^7\:\text{s}×\dfrac{1\:\text{hr}}{3600\:\text{s}}×\dfrac{1\:\text{day}}{24\:\text{hr}}[/tex]

[tex]\:\:\:\:\:= 285.3\:\text{days}[/tex]