Answer:
The game's expected value is of -$1.5.
Step-by-step explanation:
Expected value:
Probability of each outcome multiplied by the outcome.
One out of 6 sides is 2:
1/6 probability of the player earning 45 - 9 = $36.
5/6 probability of the player losing $9. So
[tex]E = 36\frac{1}{6} - 9\frac{5}{6} = \frac{36 - 45}{6} = -\frac{9}{6} = -1.5[/tex]
The game's expected value is of -$1.5.