Find the equation of the line using the point-slope formula. Write the final equation using the slope-intercept form.
perpendicular to
7y = x − 4
and passes through the point
(−2, 1)

Respuesta :

Answer:

[tex]y = -7x -13[/tex]

Step-by-step explanation:

Given

Perpendicular to

[tex]7y = x -4[/tex]

Passes through

[tex](-2,1)[/tex]

Required

The equation

First, we calculate the slope of:

[tex]7y = x -4[/tex]

Divide through by 7

[tex]y = \frac{1}{7}x - \frac{4}{7}[/tex]

A linear function is:

[tex]y=mx + c[/tex]

Where;

[tex]m \to slope[/tex]

So:

[tex]m = \frac{1}{7}[/tex]

For the perpendicular line; the slope is:

[tex]m_2 = -\frac{1}{m}[/tex]

So, we have:

[tex]m_2 = -\frac{1}{1/7}[/tex]

[tex]m_2 = -7[/tex]

The equation is:

[tex]y = m(x - x_1) + y_1[/tex]

So, we have:

[tex]y = -7(x - -2) + 1[/tex]

[tex]y = -7(x +2) + 1[/tex]

Open bracket

[tex]y = -7x -14 + 1[/tex]

[tex]y = -7x -13[/tex]