Answer:
The cube root parent function:
- f(x) = [tex]\sqrt[3]{x}[/tex]
Horizontally stretched by a factor of 4:
- g(x) → f(1/4x) = [tex]\sqrt[3]{1/4x}[/tex]
Translated 5 units right:
- h(x) → g(x - 5) = [tex]\sqrt[3]{1/4x - 5}[/tex]
Translated 3 units up:
- k(x) → h(x) + 3 = [tex]\sqrt[3]{1/4x - 5} + 3[/tex]