Answer:
C
Step-by-step explanation:
We are given that:
[tex]\displaystyle \sin y^\circ = \frac{s}{8}\text{ and } \tan y^\circ = \frac{s}{t}[/tex]
And we want to find the value of:
[tex]\displaystyle \sec y^\circ[/tex]
Recall that tan(θ) = sin(θ) / cos(θ). Since sec(θ) = 1 / cos(θ), tan(θ) = sin(θ)sec(θ). Substitute:
[tex]\displaystyle \sin y^\circ \sec y^\circ = \frac{s}{t}[/tex]
Substitute:
[tex]\displaystyle \frac{s}{8}\sec y^\circ =\frac{s}{t}[/tex]
Solve for secant:
[tex]\displaystyle \sec y^\circ = \frac{8}{t}[/tex]
Hence, our answer is C.