see ss below
spam answers will be reported
![see ss belowspam answers will be reported class=](https://us-static.z-dn.net/files/ded/0fcee8fade8dddf7d8707d2f39831588.jpg)
Answer:
G = 9y
General Formulas and Concepts:
Algebra I
Step-by-step explanation:
Step 1: Define
Identify
18y² = G(2y²)
Step 2: Solve for G
Option 1: Factor
Option 2: Isolate
Answer:
[tex]\boxed {\boxed {\sf G= 9y}}[/tex]
Step-by-step explanation:
We are given the following equation and asked to find the missing factor that makes the equality true.
[tex]18y^3=(G)(2y^2)[/tex]
Essentially, we need to solve for the variable G.
1. Factoring
One method we can use is factoring.
We could factor the expression 18y³ because we know one factor is 2y². Since this is one of the factors, the other must be 9y.
[tex]18y^3=(9y)(2y^2)[/tex]
If we compare this factored version of the expression with the original equation we see that 9y and G correspond, so they must be equal.
[tex]G=9y[/tex]
2. Solving
Another method we could use is solving.
We can solve the original equation for G by isolating the variable.
[tex]18y^3= (G)(2y^2)[/tex]
G is being multiplied by 2y³. The inverse of multiplication is division, so we divide both sides of the equation by 2y³.
[tex]\frac {18y^3}{2y^2}=\frac{(G)(2y^2)}{2y^2}[/tex]
[tex]\frac {18y^3}{2y^2}= G[/tex]
The coefficients are divided as usual and the exponents are subtracted.
[tex]9y= G[/tex]