Find the value of cos H rounded to the nearest hundredth, if necessary
![Find the value of cos H rounded to the nearest hundredth if necessary class=](https://us-static.z-dn.net/files/d3d/86a33e3f67de4d11a029d6a7ad02dbaf.png)
Answer:
0.6
Step-by-step explanation:
cos H = GH/FH
FH^2=20^2+15^2
FH^2=400+225=625
FH=25
cos H= 15/25=3/5=0.6
===========================================================
Explanation:
Before we can apply a trig ratio, we need to find the length of the hypotenuse. Use the pythagorean theorem.
a^2 + b^2 = c^2
c^2 = a^2 + b^2
c = sqrt(a^2 + b^2)
c = sqrt(15^2 + 20^2)
c = 25
The hypotenuse is 25 units long, which is the length of segment FH.
Now we can find the cosine ratio
cos(angle) = adjacent/hypotenuse
cos(H) = GH/FH
cos(H) = 15/25
cos(H) = 3/5
cos(H) = 0.6