Consider the equations y = VI and y
32 – 1.
The system of equations is equal at approximately
![Consider the equations y VI and y 32 1 The system of equations is equal at approximately class=](https://us-static.z-dn.net/files/d67/12e61ab0d1efe7a46c1d0af1a6200c47.png)
Answer:
[tex]x = 2.62[/tex] and [tex]x = 0.381[/tex]
Step-by-step explanation:
[tex]y = \sqrt x\\[/tex]
[tex]y = x - 1[/tex]
Required
y, when they are equal.
To do this, we set them to another
[tex]\sqrt{x} = x - 1[/tex]
Square both sides
[tex]x = (x - 1)^2[/tex]
Expand
[tex]x = x^2 - 2x + 1[/tex]
Collect like terms
[tex]x^2 -x-2x+1 = 0[/tex]
[tex]x^2 - 3x + 1 = 0[/tex]
Using quadratic formula
[tex]x = 2.62[/tex] and [tex]x = 0.381[/tex]