Respuesta :
Explanation:
Given
Ball is projected horizontally from a building of height [tex]h=19.6\ m[/tex]
time taken to reach ground is given by
[tex]\text{Cosidering vertical motion}\\\Rightarrow h=ut+0.5at^2\\\Rightarrow 19.6=0+0.5\times 9.8t^2\\\Rightarrow t^2=4\\\Rightarrow t=2\ s[/tex]
(b) Line joining the point of projection and the point where it hits the ground makes an angle of [tex]45^{\circ}[/tex]
From the figure, it can be written
[tex]\Rightarrow \tan 45^{\circ}=\dfrac{h}{x}\\\\\Rightarrow x=h\cdot 1\\\Rightarrow x=19.6[/tex]
Considering horizontal motion
[tex]\Rightarrow x=u_xt\\\Rightarrow 19.6=u_x\times 4\\\Rightarrow u_x=4.9\ m/s[/tex]
(c) The vertical velocity with which it strikes the ground is given by
[tex]\Rightarrow v^2-u_y^2=2as\\\Rightarrow v^2-0=2\times 9.8\times 19.6\\\Rightarrow v=\sqrt{384.16}\\\Rightarrow v=19.6\ m/s[/tex]
Thus, the ball strikes with a vertical velocity of [tex]19.6\ m/s[/tex]

Explanation:
Given
Ball is projected horizontally from a building of height
time taken to reach ground is given by
(b) Line joining the point of projection and the point where it hits the ground makes an angle of
From the figure, it can be written
Considering horizontal motion
(c) The vertical velocity with which it strikes the ground is given by
Thus, the ball strikes with a vertical velocity of