Respuesta :

Answer:

[tex]a_n = -11-14n[/tex]

Step-by-step explanation:

Given

[tex]a_1 = -25[/tex]

[tex]a_n = a_{n-1}-14[/tex]

Required

The explicit formula

First, calculate [tex]a_2[/tex]

Set n=2; So:

[tex]a_2 = a_{2-1}-14[/tex]

[tex]a_2 = a_{1}-14[/tex]

Substitute -25 for [tex]a_1[/tex]

[tex]a_2 = -25-14[/tex]

[tex]a_2 = -39[/tex]

Calculate the common difference (d)

[tex]d = a_2 - a_1[/tex]

[tex]d = -39 --25[/tex]

[tex]d = -14[/tex]

So, the nth term is:

[tex]a_n = a_1 + (n - 1)d[/tex]

[tex]a_n = -25+ (n - 1)*-14[/tex]

Open bracket

[tex]a_n = -25-14n + 14[/tex]

Collect like terms

[tex]a_n = 14-25-14n[/tex]

[tex]a_n = -11-14n[/tex]

RELAXING NOICE
Relax