Please help me with solving these. Thank you very much. Have a great day!

Answer:
Problem 20)
[tex]\displaystyle \frac{dy}{dx}=(\cos x)^x\left(\ln \cos x-x\tan x\right)[/tex]
Problem 21)
A)
The velocity function is:
[tex]\displaystyle v(t) =2\pi(\cos(2\pi t)-\sin(\pi t))[/tex]
The acceleration function is:
[tex]\displaystyle a(t)=-2\pi^2(2\sin(2\pi t)+\cos(\pi t))[/tex]
B)
[tex]s(0)=2\text{, }v(0) = 2\pi \text{ m/s}\text{, and } a(0) = -2\pi^2\text{ m/s$^2$}[/tex]
Step-by-step explanation:
Problem 20)
We want to differentiate the equation:
[tex]\displaystyle y=\left(\cos x\right)^x[/tex]
We can take the natural log of both sides. This yields:
[tex]\displaystyle \ln y = \ln((\cos x)^x)[/tex]
Since ln(aᵇ) = bln(a):
[tex]\displaystyle \ln y =x\ln \cos x[/tex]
Take the derivative of both sides with respect to x:
[tex]\displaystyle \frac{d}{dx}\left[\ln y \right]=\frac{d}{dx}\left[x \ln \cos x\right][/tex]
Implicitly differentiate the left and use the product rule on the right. Therefore:
[tex]\displaystyle \frac{1}{y}\frac{dy}{dx}=\ln \cos x+x\left(\frac{1}{\cos x}\cdot -\sin(x)\right)[/tex]
Simplify:
[tex]\displaystyle \frac{1}{y}\frac{dy}{dx}=\ln \cos x-\frac{x\sin x}{\cos x}[/tex]
Simplify and multiply both sides by y:
[tex]\displaystyle \frac{dy}{dx}=y\left(\ln \cos x-x \tan x\right)[/tex]
Since y = (cos x)ˣ:
[tex]\displaystyle \frac{dy}{dx}=(\cos x)^x\left(\ln \cos x-x\tan x\right)[/tex]
Problem 21)
We are given the position function of a particle:
[tex]\displaystyle s(t)= \sin (2\pi t)+2\cos(\pi t)[/tex]
A)
Recall that the velocity function is the derivative of the position function. Hence:
[tex]\displaystyle v(t)=s'(t)=\frac{d}{dt}[\sin(2\pi t)+2\cos(\pi t)][/tex]
Differentiate:
[tex]\displaystyle \begin{aligned} v(t) &= 2\pi \cos(2\pi t)-2\pi \sin(\pi t)\\&=2\pi(\cos(2\pi t)-\sin(\pi t))\end{aligned}[/tex]
The acceleration function is the derivative of the velocity function. Hence:
[tex]\displaystyle a(t)=v'(t)=\frac{d}{dt}[2\pi(\cos(2\pi t)-\sin(\pi t))][/tex]
Differentiate:
[tex]\displaystyle \begin{aligned} a(t)&=2\pi[-2\pi\sin(2\pi t)-\pi\cos(\pi t)]\\&=-2\pi^2(2\sin(2\pi t)+\cos(\pi t))\end{aligned}[/tex]
B)
The position at t = 0 will be:
[tex]\displaystyle \begin{aligned} s(0)&=\sin(2\pi(0))+2\cos(\pi(0))\\&=\sin(0)+2\cos(0)\\&=(1)+2(1)\\&=2\end{aligned}[/tex]
The velocity at t = 0 will be:
[tex]\displaystyle \begin{aligned} v(0)&=2\pi(\cos(2\pi (0)-\sin(\pi(0))\\&=2\pi(\cos(0)-\sin(0))\\&=2\pi((1)-(0))\\&=2\pi \text{ m/s}\end{aligned}[/tex]
And the acceleration at t = 0 will be:
[tex]\displaystyle \begin{aligned} a(0) &= -2\pi ^2(2\sin(2\pi(0))+\cos(\pi(0)) \\ & = -2\pi ^2(2\sin(0)+\cos(0)) \\ &= -2\pi ^2(2(0)+(1)) \\ &= -2\pi^2(1) \\ &= -2\pi^2\text{ m/s$^2$} \end{aligned}[/tex]