Let ℤ be the set of all integers and let, (20) 0 = { ∈ ℤ| = 4, for some integer }, 1 = { ∈ ℤ| = 4 + 1, for some integer }, 2 = { ∈ ℤ| = 4 + 2, for some integer }, 3 = { ∈ ℤ| = 4 + 3, for some integer }. Is {0, 1, 2, 3 } a partition of ℤ? Explain your answer.

Respuesta :

Answer:

[tex]\{0, 1, 2, 3\}[/tex] is a partition of Z

Step-by-step explanation:

Given

[tex]$A _ { 0 } = \{n \in \mathbf { Z } | n = 4 k$,[/tex] for some integer k[tex]\}[/tex]

[tex]$A _ { 1 } = \{ n \in \mathbf { Z } | n = 4 k + 1$,[/tex] for some integer k},

[tex]$A _ { 2 } = { n \in \mathbf { Z } | n = 4 k + 2$,[/tex] for some integer k},

and

[tex]$A _ { 3 } = { n \in \mathbf { Z } | n = 4 k + 3$,[/tex]for some integer k}.

Required

Is [tex]\{0, 1, 2, 3\}[/tex] a partition of Z

Let

[tex]k = 0[/tex]

So:

[tex]$A _ { 0 } = 4 k[/tex]

[tex]$A _ { 0 } = 4 k \to $A _ { 0 } = 4 * 0 = 0[/tex]

[tex]$A _ { 1 } = 4 k + 1$,[/tex]

[tex]A _ { 1 } = 4 *0 + 1$ \to A_1 = 1[/tex]

[tex]A _ { 2 } = 4 k + 2[/tex]

[tex]A _ { 2} = 4 *0 + 2$ \to A_2 = 2[/tex]

[tex]A _ { 3 } = 4 k + 3[/tex]

[tex]A _ { 3 } = 4 *0 + 3$ \to A_3 = 3[/tex]

So, we have:

[tex]\{A_0,A_1,A_2,A_3\} = \{0,1,2,3\}[/tex]

Hence:

[tex]\{0, 1, 2, 3\}[/tex] is a partition of Z

ACCESS MORE
EDU ACCESS