Answer:
[tex]\{0, 1, 2, 3\}[/tex] is a partition of Z
Step-by-step explanation:
Given
[tex]$A _ { 0 } = \{n \in \mathbf { Z } | n = 4 k$,[/tex] for some integer k[tex]\}[/tex]
[tex]$A _ { 1 } = \{ n \in \mathbf { Z } | n = 4 k + 1$,[/tex] for some integer k},
[tex]$A _ { 2 } = { n \in \mathbf { Z } | n = 4 k + 2$,[/tex] for some integer k},
and
[tex]$A _ { 3 } = { n \in \mathbf { Z } | n = 4 k + 3$,[/tex]for some integer k}.
Required
Is [tex]\{0, 1, 2, 3\}[/tex] a partition of Z
Let
[tex]k = 0[/tex]
So:
[tex]$A _ { 0 } = 4 k[/tex]
[tex]$A _ { 0 } = 4 k \to $A _ { 0 } = 4 * 0 = 0[/tex]
[tex]$A _ { 1 } = 4 k + 1$,[/tex]
[tex]A _ { 1 } = 4 *0 + 1$ \to A_1 = 1[/tex]
[tex]A _ { 2 } = 4 k + 2[/tex]
[tex]A _ { 2} = 4 *0 + 2$ \to A_2 = 2[/tex]
[tex]A _ { 3 } = 4 k + 3[/tex]
[tex]A _ { 3 } = 4 *0 + 3$ \to A_3 = 3[/tex]
So, we have:
[tex]\{A_0,A_1,A_2,A_3\} = \{0,1,2,3\}[/tex]
Hence:
[tex]\{0, 1, 2, 3\}[/tex] is a partition of Z