Respuesta :

Answer:

Step-by-step explanation:

9). Dimensions of the logo = 4 inch by 6 inch

   ∵ 12 inches = 1 feet

    ∴ 1 inch = [tex]\frac{1}{12}[/tex] feet

   Therefore, dimensions of the logo (in feet) will be,

   [tex]\frac{4}{12}[/tex] feet by [tex]\frac{6}{12}[/tex] feet  Or [tex]\frac{1}{3}[/tex] feet by [tex]\frac{1}{2}[/tex] feet

   Dimensions of the logo which are 6 times larger than the original one.

    Dimensions of the advertisement = [tex]\frac{6}{3}[/tex] feet by [tex]\frac{6}{2}[/tex] feet

                                                            = 2 feet by 3 feet

    Area of the advertisement = 2 × 3

                                                = 6 feet²

10). By the property of similar polygons,

     "Corresponding sides of two similar polygons are proportional"

     If the dimensions of two similar polygons are 'x' and 'kx'

     Ratio of the perimeter of two polygons = [tex]\frac{\text{Perimeter of the image polygon}}{\text{Perimeter of the original polygon}}[/tex] = k

     Ratio of area of two similar polygons = [tex]\frac{\text{Area of the image polygon}}{\text{Area of the original polygon}}[/tex] = k²

     Ratio of volumes of two similar polygons = [tex]\frac{\text{Volume of the image polygon}}{\text{Volume of the original polygon}}[/tex] = k³

RELAXING NOICE
Relax