Respuesta :

Step-by-step explanation:

Given:

[tex]\textbf{F} = (2xy + z^3)\hat{\textbf{i}} + x^3\hat{\textbf{j}} + 3xz^2\hat{\textbf{k}}[/tex]

This field will have a scalar potential [tex]\varphi[/tex] if it satisfies the condition [tex]\nabla \times \textbf{F}=0[/tex]. While the first x- and y- components of [tex]\nabla \times \textbf{F}[/tex] are satisfied, the z-component doesn't.

[tex](\nabla \times \textbf{F})_z = \left(\dfrac{\partial F_y}{\partial x} - \dfrac{\partial F_x}{\partial y} \right)[/tex]

[tex]\:\:\:\:\:\:\:\:\: = 3x^2 - 2x \ne 0[/tex]

Therefore the field is nonconservative so it has no scalar potential. We can still calculate the work done by defining the position vector [tex]\vec{\textbf{r}}[/tex] as

[tex]\vec{\textbf{r}} = x \hat{\textbf{i}} + y \hat{\textbf{j}} + z \hat{\textbf{k}}[/tex]

and its differential is

[tex]\textbf{d} \vec{\textbf{r}} = dx \hat{\textbf{i}} + dy \hat{\textbf{j}} + dz \hat{\textbf{k}}[/tex]

The work done then is given by

[tex]\displaystyle \oint_c \vec{\textbf{F}} • \textbf{d} \vec{\textbf{r}} = \int ((2xy + z^3)\hat{\textbf{i}} + x^3\hat{\textbf{j}} + 3xz^2\hat{\textbf{k}}) • (dx \hat{\textbf{i}} + dy \hat{\textbf{j}} + dz \hat{\textbf{k}})[/tex]

[tex]\displaystyle = (x^2y + xz^3) + x^3y + xz^3|_{(1, -2, 1)}^{(3, 1, 4)}[/tex]

[tex]= 422[/tex]

ACCESS MORE
EDU ACCESS