Respuesta :

Answer:

[tex]3 \sqrt{2} [/tex]

Step-by-step explanation:

Given

[tex] \frac{ \sin(60) \sec(60) \cot(30) }{ \cos( 45) ) } [/tex]

Using the unit circle, we know that

[tex] \sin(60) = \frac{ \sqrt{3} }{2} [/tex]

[tex] \cos(45) = \frac{ \sqrt{2} }{2} [/tex]

We can find sec and cot by using reciprocal identies.

[tex] \sec(x) = \frac{1}{ \cos(x) } [/tex]

[tex] \cos(60) = \frac{1}{2} [/tex]

So

[tex] \sec(60) = 2[/tex]

[tex] cot(x) = \frac{1}{ \tan(x) } [/tex]

[tex] \tan(30) = \frac{1}{ \sqrt{3} } [/tex]

so

[tex] \cot(30) = \sqrt{3} [/tex]

Plug in the values.

[tex] \frac{ \frac{ \sqrt{3} }{2} \times 2 \times \sqrt{3} }{ \frac{ \sqrt{2} }{2} } [/tex]

[tex] \frac{ \frac{ \sqrt{3} }{2} \times \frac{ \sqrt{12} }{1} }{ \frac{ \sqrt{2} }{2} } [/tex]

[tex] \frac{3}{ \frac{ \sqrt{2} }{2} } [/tex]

[tex]3 \sqrt{2} [/tex]

ACCESS MORE