Answer:
5.19 Km
Step-by-step explanation:
According To the Question,
Suppose he Runs Xkm before swimming to minimize the time it takes to reach the island .
So, he should swim [tex]\sqrt{2^{2}+(6-X)^{2} } Km[/tex] .
Now The Total Time is t = [tex]\frac{X}{8} + \frac{\sqrt{2^{2}+(6-X)^{2} } }{3}[/tex] .
t = [tex]\frac{X}{8} + \frac{\sqrt{X^{2}-12X+40 } }{3}[/tex]
[tex]\frac{dt}{dX}=1/8 + 1/3 * 1/2 * \frac{2X-12}{\sqrt{X^{2}-12X+40 } }[/tex]
[tex]\frac{dt}{dX}=1/8 + \frac{1}{3} * \frac{X-6}{\sqrt{X^{2}-12X+40 } }[/tex]
Now Put [tex]\frac{dt}{dX} = 0[/tex] , we get
[tex]1/8 + \frac{1}{3} * \frac{X-6}{\sqrt{X^{2}-12X+40 } } = 0[/tex]
[tex]\frac{1}{3} * \frac{X-6}{\sqrt{X^{2}-12X+40 } } = - \frac{1}{8}[/tex]
8(X-6)= -3 × [tex]{\sqrt{X^{2}-12X+40 }[/tex]
square on both side,We get
64(X²-12X+36) = 9X² - 108X +360
55X² -660X + 1944 = 0
Apply Shri Dharacharya formula, To Find The Value of 'X'
X =[ - (-660) ±[tex]\sqrt{(-660)^{2}-4*55*1944 }[/tex] ] ÷ 2×55
X = (660±√7920) / 110
X= (660 - 89 ) / 110 ⇒ (Neglect '+' because it give 749/110 = 6.8 km Which is not possible )
X=571/110 ⇔ 5.19km he Should Run before swimming to minimize the time .
(For Diagram,Please Find In Attachment)