Answer:
[tex] \frac{1}{p - q} [/tex]
Step-by-step explanation:
[tex] \frac{ {p}^{2} + 2pq + q}{ {p}^{3} - p {q}^{2} + {p}^{2} q - {q}^{3} } [/tex]
[tex] \frac{ {p}^{2} +2 \times p \times q+ {q}^{2} }{p^2−pq^2+p^2q−q^3} [/tex]
[tex] \frac{(p + q {)}^{2} }{p^3−pq^2+p^2q−q^3} [/tex]
[tex] \frac{( p+ q {)}^{2} }{p(p^2−1q^2)+q(p^2−q^2)} [/tex]
[tex] \frac{ (p + q {)}^{2} }{ {p}^{3} - p {q}^{2} + {p}^{2} q - {q}^{3} } [/tex]
[tex] \frac{(p+q {)}^{2} }{(p+q)(p−q)(p+q)} [/tex]
[tex] \frac{(p + q {)}^{2} }{(p + q {)}^{2}(p - q) } [/tex] ( cancel common factors)
[tex] \frac{1}{p - q} [/tex]
Hope it is helpful...