Respuesta :

Answer:

13[tex]\sqrt{22}[/tex] / 44

Step-by-step explanation:

cos A = 9/13

here adjacent = 9 and hypotenuse = 13  opposite = ?

using pythagoras theorem to find opposite

a^2 + b^2 = c^2

9^2 + b^2 = 13^2

81 + b^2 = 169

b^2 = 169 - 81

b^2 = 88

b = [tex]\sqrt{88}[/tex]

b =  [tex]2\sqrt{22}[/tex]

therefore opposite =  [tex]2\sqrt{22}[/tex]

cosec A = hypotenuse/opposite

= 13/[tex]2\sqrt{22}[/tex]

rationalizing the denominator

=13/ [tex]2\sqrt{22}[/tex]  *  [tex]2\sqrt{22}[/tex] /  [tex]2\sqrt{22}[/tex]

=13 *[tex]2\sqrt{22}[/tex] /( [tex]2\sqrt{22}[/tex] )^2

=26 [tex]\sqrt{22}[/tex] / 4*22

=26 [tex]\sqrt{22}[/tex] / 88

=13[tex]\sqrt{22}[/tex] / 44

Answer:

[tex]cosec A = \frac{13}{\sqrt{88}}[/tex]

   OR

[tex]cosec A = \frac{13 \sqrt{22}}{44}[/tex]

Step-by-step explanation:

Formulas used:

[tex]cos^2 A = 1 - sin^2 A\\\\cosec A = \frac{1}{sin A}[/tex]

Given :

  [tex]cos A = \frac{9}{13}[/tex]

Find cosec A

   [tex]sin ^2 A = 1 - cos^2 A[/tex]

              [tex]= 1 - (\frac{9}{13})^2\\\\= 1 - \frac{81}{169}\\\\=\frac{169 - 81}{169}\\\\=\frac{88}{169}[/tex]

 [tex]sin A = \sqrt{\frac{88}{169}} = \frac{\sqrt{88}}{13}[/tex]

Therefore,

         [tex]cosec A = \frac{1}{sin A} = \frac{1}{ \frac{\sqrt{88}}{13}} = \frac{13}{ \sqrt{88}}[/tex]

OR In a simplified form :

[tex]cosec A = \frac{13}{\sqrt{88}} \times \frac{\sqrt{88}}{\sqrt{88}} = \frac {13 \times \sqrt{4 \times 22}}{88} = \frac{13 \times 2 \sqrt{22}} {88} = \frac{13 \sqrt{22}}{44}[/tex]