Respuesta :
Answer:
13[tex]\sqrt{22}[/tex] / 44
Step-by-step explanation:
cos A = 9/13
here adjacent = 9 and hypotenuse = 13 opposite = ?
using pythagoras theorem to find opposite
a^2 + b^2 = c^2
9^2 + b^2 = 13^2
81 + b^2 = 169
b^2 = 169 - 81
b^2 = 88
b = [tex]\sqrt{88}[/tex]
b = [tex]2\sqrt{22}[/tex]
therefore opposite = [tex]2\sqrt{22}[/tex]
cosec A = hypotenuse/opposite
= 13/[tex]2\sqrt{22}[/tex]
rationalizing the denominator
=13/ [tex]2\sqrt{22}[/tex] * [tex]2\sqrt{22}[/tex] / [tex]2\sqrt{22}[/tex]
=13 *[tex]2\sqrt{22}[/tex] /( [tex]2\sqrt{22}[/tex] )^2
=26 [tex]\sqrt{22}[/tex] / 4*22
=26 [tex]\sqrt{22}[/tex] / 88
=13[tex]\sqrt{22}[/tex] / 44
Answer:
[tex]cosec A = \frac{13}{\sqrt{88}}[/tex]
OR
[tex]cosec A = \frac{13 \sqrt{22}}{44}[/tex]
Step-by-step explanation:
Formulas used:
[tex]cos^2 A = 1 - sin^2 A\\\\cosec A = \frac{1}{sin A}[/tex]
Given :
[tex]cos A = \frac{9}{13}[/tex]
Find cosec A
[tex]sin ^2 A = 1 - cos^2 A[/tex]
[tex]= 1 - (\frac{9}{13})^2\\\\= 1 - \frac{81}{169}\\\\=\frac{169 - 81}{169}\\\\=\frac{88}{169}[/tex]
[tex]sin A = \sqrt{\frac{88}{169}} = \frac{\sqrt{88}}{13}[/tex]
Therefore,
[tex]cosec A = \frac{1}{sin A} = \frac{1}{ \frac{\sqrt{88}}{13}} = \frac{13}{ \sqrt{88}}[/tex]
OR In a simplified form :
[tex]cosec A = \frac{13}{\sqrt{88}} \times \frac{\sqrt{88}}{\sqrt{88}} = \frac {13 \times \sqrt{4 \times 22}}{88} = \frac{13 \times 2 \sqrt{22}} {88} = \frac{13 \sqrt{22}}{44}[/tex]