Respuesta :
Answer:
[tex](1,\, 10)[/tex].
Step-by-step explanation:
Differentiate each function to find an expression for its gradient (slope of the tangent line) with respect to [tex]x[/tex]. Make use of the power rule to find the following:
[tex]g^\prime(x) = 3\, x^2 - 2\, a\, x[/tex].
[tex]h^\prime(x) = 2\, (2\, x) + b = 4\, x + b[/tex].
The question states that the graphs of [tex]g(x)[/tex] and [tex]h(x)[/tex] touch at [tex]x = 1[/tex], such that [tex]g^\prime(1) = h^\prime(1)[/tex]. Therefore:
[tex]3 - 2\, a = 4 + b[/tex].
On the other hand, since the graph of [tex]g(x)[/tex] and [tex]h(x)[/tex] coincide at [tex]x = 1[/tex], [tex]g(1) = h(1)[/tex] (otherwise, the two graphs would not even touch at that point.) Therefore:
[tex]1 - a + 6 = 2 + b + 3[/tex].
Solve this system of two equations for [tex]a[/tex] and [tex]b[/tex]:
[tex]\begin{aligned}& a + b = 2 \\ & 2\, a + b = -1\end{aligned}[/tex].
Therefore, [tex]a = -3[/tex] whereas [tex]b = 5[/tex].
Substitute these two values back into the expression for [tex]g(x)[/tex] and [tex]h(x)[/tex]:
[tex]g(x) = x^3 + 3\, x^2 + 6[/tex].
[tex]h(x) = 2\, x^2 + 5\, x + 3[/tex].
Evaluate either expression at [tex]x = 1[/tex] to find the [tex]y[/tex]-coordinate of the intersection. For example, [tex]g(1) = 1 + 3 + 6 = 10[/tex]. Similarly, [tex]h(1) = 2 + 5 + 3 = 10[/tex].
Therefore, the intersection of these two graphs would be at [tex](1,\, 10)[/tex].